Rapid dopaminergic signaling by interneurons that contain markers for catecholamines and GABA in the feeding circuitry of Aplysia.

نویسندگان

  • Manuel Díaz-Ríos
  • Mark W Miller
چکیده

Consummatory feeding behaviors in Aplysia californica are controlled by a polymorphic central pattern generator (CPG) circuit. Previous investigations have demonstrated colocalization of markers for GABA and catecholamines within two interneurons, B20 and B65, that participate in configuring the functional output of this CPG. This study examined the contributions of GABA and dopamine (DA) to rapid synaptic signaling from B20 and B65 to follower cells that implement their specification of motor programs. Pharmacological tests did not substantiate the participation of GABA in the mediation of the excitatory postsynaptic potentials (EPSPs) from either B20 or B65. However, GABA and the GABA(B) receptor agonist baclofen were found to modify these signals in a target-specific manner. Several observations indicated that DA acts as the neurotransmitter mediating fast EPSPs from B20 to two radula closer motor neurons B8 and B16. In both motor neurons, application of DA produced depolarizing responses associated with decreased input resistance and increased excitation. B20-evoked EPSPs in both follower cells were occluded by exogenous dopamine and blocked by the DA antagonist sulpiride. While dopamine occlusion and sulpiride block of convergent signaling to B8 from B65 resembled that of B20, both of these actions were less potent on the rapid signaling from B65 to the multifunctional and widely acting interneuron B4/5. These findings indicate that dopamine mediates divergent (B20 to B16 and B8) and convergent (B20 and B65 to B8) rapid EPSPs from two influential CPG interneurons in which it is colocalized with GABA-like immunoreactivity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modulation of fictive feeding by dopamine and serotonin in aplysia.

The buccal ganglia of Aplysia contain a central pattern generator (CPG) that mediates rhythmic movements of the buccal apparatus during feeding. Activity in this CPG is believed to be regulated, in part, by extrinsic serotonergic inputs and by an intrinsic and extrinsic system of putative dopaminergic cells. The present study investigated the roles of dopamine (DA) and serotonin (5-HT) in regul...

متن کامل

Concerted GABAergic actions of Aplysia feeding interneurons in motor program specification.

GABAergic inhibitory interneurons regulate the activity of diverse types of neural networks, but the specific roles of these interneurons in motor control are poorly understood. In the Aplysia feeding motor network, three interneurons, cerebral-buccal interneuron-3 (CBI-3) and buccal interneurons B40 and B34, are GABA-immunoreactive and evoke fast IPSPs in their postsynaptic followers. Using a ...

متن کامل

Conditional rhythmicity and synchrony in a bilateral pair of bursting motor neurons in Aplysia.

This investigation examined the activity of a bilateral pair of motor neurons (B67) in the feeding system of Aplysia californica. In isolated ganglia, B67 firing exhibited a highly stereotyped bursting pattern that could be attributed to an underlying TTX-resistant driver potential (DP). Under control conditions, this bursting in the two B67 neurons was infrequent, irregular, and asynchronous. ...

متن کامل

Feeding neural networks in the mollusc Aplysia.

Aplysia feeding is striking in that it is executed with a great deal of plasticity. At least in part, this flexibility is a result of the organization of the feeding neural network. To illustrate this, we primarily discuss motor programs triggered via stimulation of the command-like cerebral-buccal interneuron 2 (CBI-2). CBI-2 is interesting in that it can generate motor programs that serve opp...

متن کامل

PKC-mediated GABAergic enhancement of dopaminergic responses: implication for short-term potentiation at a dual-transmitter synapse.

Transmitter-mediated homosynaptic potentiation is generally implemented by the same transmitter that mediates the excitatory postsynaptic potentials (EPSPs), e.g., glutamate. When a presynaptic neuron contains more than one transmitter, however, potentiation can in principle be implemented by a transmitter different from that which elicits the EPSPs. Neuron B20 in Aplysia contains both dopamine...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 93 4  شماره 

صفحات  -

تاریخ انتشار 2005